Hodge theory for G2 -manifolds: intermediate Jacobians and Abel-Jacobi maps

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Arithmetic Hodge Structure and Higher Abel-jacobi Maps

In this paper, we show some applications to algebraic cycles by using higher Abel-Jacobi maps which were defined in [the author: Motives and algebraic de Rham cohomology]. In particular, we prove that the Beilinson conjecture on algebraic cycles over number fields implies the Bloch conjecture on zero-cycles on surfaces. Moreover, we construct a zero-cycle on a product of curves whose Mumford in...

متن کامل

Hodge Theory for R- Manifolds

Let X be an R-fold, and let π : E −→ X be a real vector bundle, of rank r, equipped with a positive definite symmetric bilinear form. If e1, . . . , er ∈ π −1(X) are orthonormal, then e1 ∧ · · · ∧ er is a non-trivial vector in ∧r E. Proposition: If f1, . . . , fr is any other orthonormal basis for π −1(X), then e1 ∧ · · · ∧ er = ±f1 ∧ · · · ∧ fr. Proof. Note that fi = g · ei for g ∈ O(r), so de...

متن کامل

Hodge Theory of Maps

The existence of a Kähler form give strong topological constraints via Hodge theory. Can we get similar constraints on algebraic maps? Let f : X → Y a proper morphism. Our goal is going to be to linearize the problem. For this lecture, we will assume f is projective and smooth, to simplify the problem. In fact, we will assume X and Y are nonsingular. So our map factors X → P × Y → Y and df is s...

متن کامل

Abel-jacobi Maps Associated to Smooth Cubic Threefolds

In this article we consider the spaces H(X) parametrizing curves of degree d and genus g on a smooth cubic threefold X ⊂ P, with regard in particular to the Abel-Jacobi map ud : H(X) → J(X) to the intermediate Jacobian J(X) of X . Our principle result is that for all d ≤ 5 the map ud coincides with the maximal rationally connected fibration of H(X).

متن کامل

D ec 1 99 8 REFINING THE ABEL – JACOBI MAPS

Given a smooth projective variety X over a field k of characteristic zero, we consider the composition of the de Rham cohomology cycle class map over k from the Chow group CH q (X × k K), where K is the field of fractions of henselization A h of the local ring of a smooth closed point of a variety over the field k with an appropriate projection:

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 2009

ISSN: 0024-6115

DOI: 10.1112/plms/pdp004